Азамат Байбалинов
24.01.2021 11:51:59
Геометрия 10-11 класс
10 баллов
Плоскости а и β взаимно перпендикулярны и пересекаются по прямой с. Докажите, что любая прямая плоскости а, перпендикулярная к прямой с, перпендикулярна к плоскости β.
Азамат Байбалинов
0
24.01.2021 12:29:32
Проведем в плоскости α произвольную прямую АС, перпендикулярную к прямой с, C∈c. Докажем, что CA⊥β.

В плоскости β через точку С проведем прямую СВ, перпендикулярную к прямой с. Так как СА⊥c и CB⊥c, то ∠АСВ — линейный угол одного из двугранных углов, образованных плоскостями α и β. По условию задачи α ⊥ β, поэтому ∠АСВ — прямой, т.е. CA⊥CB. Таким образом, прямая СА перпендикулярна к двум пересекающимся прямым с и СВ плоскости β, поэтому CA⊥β.
Ирина Каминкова
1
24.01.2021 13:07:20
Регистрация
Войти с помощью
Необходимо принять пользовательское соглашение
Войти
Войти с помощью
Восстановление пароля
Пожаловаться
Задать вопрос