Крутая школа
:
Готовим к поступлению на бюджет! Начни уже сейчас, это просто!
Виктория
16.02.2021 12:35:11
Алгебра 10-11 класс
20 баллов
В двух партиях k1 и k2 % доброкачественных изделий
соответственно. Наудачу выбирают по одному изделию из каждой партии.
1.Какова вероятность обнаружить среди них: а) хотя бы одно бракованное; б)
два бракованных; в) одно доброкачественное и одно бракованное?
k1=83
k2=35
2. В магазин поступают однотипные изделия с трех заводов,
причем i-й завод поставляет mi % изделий (i = 1, 2, 3). Среди изделий i-го
завода ni % первосортных. Определить вероятность того, что купленное
первосортное изделие выпущено j-м заводом.
m1=70
m2=20
m3=10
n1=70
n2=80
n3=90
j=2
работа должна содержать все необходимые пояснения и
выводы, формулы должны содержать расшифровку принятых обозначений
Виктория
16.02.2021 17:39:17
2. В магазин поступают однотипные изделия с трех заводов,
причем i-й завод поставляет mi % изделий (i = 1, 2, 3). Среди изделий i-го
завода ni % первосортных. Определить вероятность того, что купленное
первосортное изделие выпущено j-м заводом.
m1=70
m2=20
m3=10
n1=70
n2=80
n3=90
j=2
Ирина Каминкова
1
16.02.2021 13:46:20
1.
k1=83%
k2=35%
p1 = 0.83 - вероятность качественного изделия в 1й партии
p2 = 0.35 - вероятность качественного изделия во 2й партии
q1 = 1-p1 = 0.17 - вероятность брака в 1й партии
q2 = 1-p2 = 0.65 - вероятность брака во 2й партии

а) Вероятность, что оба изделия - качественные
p1*p2 = 0.83*0.35 = 0.2905
Вероятность, что хотя бы одно бракованное
1-p1*p2 = 1-0.2905 = 0.7095

б) Два бракованных
q1*q2 = 0.17*0.65 = 0.1105

в) Одно качественное и одно бракованное
p1*q2 + p2*q1 = 0.83*0.65 + 0.35*0.17 = 0.5395 + 0.0595 = 0.599
Также можно найти по формуле
1 -(p1*p2 + q1*q2) = 1-(0.2905 + 0.1105) = 1-0.401 = 0.599

---------------------------------------------------------------------------------------------------
Вероятность 1-сортного изделия по формуле полной вероятности
P = Σ mi*ni = 0.7*0.7 + 0.2*0.8 + 0.1*0.9 = 0.49+0.16+0.09 = 0.74

Вероятность 1-сортного изделия от 2-го завода по формуле Байеса
P(1;2) = m2*n2 / P = 0.2*0.8/0.74 ≈ 0.2162

Рейтинг пользователей

за неделю
  • за неделю
  • один месяц
  • три месяца
    Регистрация
    Войти с помощью
    Необходимо принять пользовательское соглашение
    Войти
    Войти с помощью
    Восстановление пароля
    Пожаловаться
    Задать вопрос