Пересечение, объединение и разность множеств

Пересечение множеств

Пересечением множеств A и B называют множество, содержащее те и только те элементы, которые входят одновременно как в множество A, так и в множество B:

$$ A \cap B = \{x|x \in \Bbb A и x \in \Bbb B \} $$

Пересечение множеств

Если множества не пересекаются, то $A \cap B = \varnothing $ - пустое множество в пересечении. Если $B \subseteq A$ - подмножество, то $A \cap B = B$ – пересечением будет меньшее множество из двух.

Например:

Если A = {1;3;5;9}, Β = {3;7;11}, то $A \cap B$ = {3;5}.

Если A = {f|f-прямоугольник}, B = {f|f-ромб}, то $A \cap B$ = {f|f-квадрат}.

Если A = $\{n|n⋮3, n \in \Bbb N \}$ - натуральные числа, кратные 3, B = $\{n|n⋮5, n \in \Bbb N \}$ - натуральные числа, кратные 5, то $A \cap B = {n|n⋮15, n \in \Bbb N}$ - натуральные числа, кратные 15.

Если A = {a│a-слон}, B = {a|a-птица}, то $A \cap B = \varnothing$.

Объединение множеств

Объединением – множеств A и B называют множество, содержащее те и только те элементы, которые входят хотя бы в одно из множеств, A или B:

$$ A \cup B = \{ x|x \in \Bbb A или x \in \Bbb B \} $$

Объединение множеств

Если $B \subseteq A$ - подмножество, то $A \cap B = A$ – объединением будет большее множество из двух.

Например:

Если A = {1;3;5;9}, Β = {3;7;11}, то $A \cup B$ = {1;3;5;7;9;11}.

Если $A = \{x|x^2-4 = 0, x \in \Bbb R\}, B = \{x|x+3 = 2, x \in \Bbb R \}, то A \cup$ B = {-2;-1;2}

Если $A = \{n│n \in \Bbb Z \}$- все целые числа, $B = \{x|x = \frac{a}{b}, a \in \Bbb Z, b \in \Bbb N \}$ - все дроби, то $A \cup B = \{x│x \in \Bbb Q\}$ - множество рациональных чисел. Заметим, что в данном случае $A \subset B$.

Универсум и отрицание

Универсум (универсальное множество) – множество, включающее в себя все множества, рассматриваемые в данной задаче.

В литературе универсум обозначают U.

На диаграммах Эйлера универсум изображают как множество точек прямоугольника, в котором лежат остальные множества:

Универсум и отрицание

Примеры универсумов:

При рассмотрении целочисленных задач, универсум – это множество целых чисел.

При построении двумерных графиков, универсум – это множество всех точек координатной плоскости.

При решении вероятностных задач, универсум – это множество всех возможных исходов цепочек событий.

Отрицание (абсолютное дополнение) множества A - множество всех элементов универсума, не принадлежащих A:

$$ \bar{A} = \{x|x \notin A \} $$

Читается «не A».

У отрицания есть любопытное свойство: $\bar{\bar{Α}} = Α $(два раза «нет» - это «да»).

Отрицание (абсолютное дополнение) множества A

Например:

Если U = {1;2;3;4;5;6;7}, A = {3;4;5}, то $\bar{A} = \{1;2;6;7\}$

Если U = $\{x|x \in \Bbb R\}$ - все действительные числа, A = $\{x|x \gt 0, x \in \Bbb R \}$ - все положительные действительные числа, то $ \bar{A} = \{x|x \le 0, x \in \Bbb R\}$.

Свойства операций пересечения и объединения

Пересечение

Объединение

Коммутативность

$A \cap B = B \cap A$

$ A \cup B = B \cup A $

Ассоциативность

$(A \cap B) \cap C = A \cap (B \cap C)$

$ (A \cup B) \cup C = A \cup ( B \cup C) $

Дистрибутивность

$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

$ (A \cap B) \cup C = (A \cup C) \cap (B \cup C) $

Идемпотентность

$A \cap A = A$

$ A \cup A = 0 $

Взаимодействие с отрицанием, пустым множеством и универсумом

$A \cap \bar{A} = \varnothing $

$A \cap U = A$

$A \cap \varnothing = \varnothing$

$A \cup \bar{A} = U $

$A \cup U = U$

$A \cup \varnothing = A$

Законы де Моргана

$ \overline{(A \cap B)} = \bar{A} \cup \bar{B} $

$ \overline{(A \cup B)} = \bar{A} \cap \bar{B} $

Закон поглощения

$ (A \cup B) \cap A = A $

$ (A \cap B) \cup A = A $

Разность множеств

Разностью двух множеств A и B называют множество, в которое входят все элементы из множества A, не принадлежащие множеству B:

$$ A\B = \{x|x \in \Bbb A , x \notin B\} $$

Читается «A без B».

На диаграммах Эйлера разности для пересекающихся множеств выглядят так:

Разность множеств 1
Разность множеств 2

Получается, что отрицание – частный случай разности: $ \bar{A} = \{x|x \in \Bbb U, x \notin A \} $= U\A

«Не A» - это «универсум без A».

Формулы включений и исключений

Рассмотрим два конечных пересекающихся множества A и B.

Пусть число элементов во множествах равно n(A)и n(B) соответственно. А число элементов в пересечении $n(A \cap B)$.

Вопрос: сколько всего элементов в обоих множествах, т.е. чему равно $n(A \cup B)$?

Формулы включений и исключений 1

Сумма n(A)и n(B) даст нам больше, чем общее количество, потому что мы два раза посчитаем то, что попадает в пересечение. Значит, если отнять одно пересечение, получится как раз то, что ищем:

$$n(A \cup B) = n(A)+ n(B)-n(A \cap B)$$

Выведем аналогичную формулу для трёх пересекающихся конечных множеств.

Формулы включений и исключений 2

Сумма n(A)+ n(B)+n(C) учтёт каждое из парных пересечений по два раза. Поэтому, аналогично задаче с двумя множествами, нужно отнять всё, что попадает в парные пересечения, т.е. отнять сумму $(n(A \cap B)+n(A \cap C)+n(B \cap C) )$. Но после этого получится, что мы лишний раз отняли $n(A \cap B \cap C)$; значит, его нужно «вернуть».

Получаем:

$$ n(A \cup B \cup C) = n(A)+ n(B)+n(C)- $$

$$ -(n(A \cap B)+n(A \cap C)+n(B \cap C) )+n(A \cap B \cap C) $$

Примеры

Пример 1. Найдите пересечение данных множеств:

а) A = {0;5;8;10},

B = {3;6;8;9}

$A \cap B$ = {8}

$б) A = \{x|x \lt 3, x \in \Bbb R\}, $

$ B = \{x|x \gt 1, x \in \Bbb R\} $

$A \cap B = \{x|1 \lt x \lt 3, x \in \Bbb R\}$ - отрезок

$в) A = \{x|x \lt 3, x \in \Bbb R\}, $

$ B = \{x|x \gt 1, x \in \Bbb N\} $

$A \cap B = \{x|1 \lt x \lt 3, x \in \Bbb N \} или A \cap B = \{2\}$ - одна точка

г) A = {f|f-правильный многоугольник},

B = {f|f-четырехугольник}

$A \cap B = \{f|f-квадрат\}$

Пример 2. Найдите объединение данных множеств:

а) A = {0;5;8;10}, B = {3;6;8;9}

$A \cup B$ = {0;3;5;6;8;9;10}

б) A = {1;2}, B = {1;2;3;4}

$A \subset B$ – строгое подмножество

$A \cup B $ = B = {1;2;3;4}

$в) A = \{x|x \lt 1, x \in \Bbb R\}, B = \{x|x \gt 1,x \in \Bbb R\} $

$A \cup B = \{x|x \neq 1, x \in \Bbb R \}$

$г) A = \{n│n⋮3, n \in \Bbb Z\}, B = \{n|n⋮9,n \in \Bbb N\} $

$B \subset A$ - строгое подмножество

$ A \cup B = A = \{n│n⋮3, n \in \Bbb Z\} $

Пример 3. Найдите отрицание данного множества на данном универсуме:

а) U = {1;2;3;4;5}, A = {2;3}

$ \bar{A} = {1;4;5}$

б) U = $\{x│x \in \Bbb Q \}$, A = $\{ \frac{4}{5}, \frac{7}{8} \}$

$ \bar{A} = \{x|x \neq \frac{4}{5}, x \neq \frac{7}{8}, x \in \Bbb Q\} $

$в) U = \{x│x \in \Bbb R\}, A = \{x|x \ge 2, x \in \Bbb R\} $

$\bar{A} = \{x|x \lt 2, x \in \Bbb R\}$

г) U = { 0;1}, A = { 0}

$ \bar{A} = {1}$

Пример 4. Найдите обе разности данных множеств:

а) A = {0;1;2;3;4}, B = {2;4}

A\B = {0;1;3}, $B\A = \{∅\}$

б) A = {0;1;3}, B = {2;4;6}

A\B = {0;1;3}, B\A = {2;4;6}

$в) A = \{x|x \gt 1, x \in \Bbb R\}, $

$ B = \{x|x \lt 3, x \in \Bbb R\} $

A\B $ = \{x|x \ge 3, x \in \Bbb R\}$

B\A $ = \{x|x \le 1,x \in \Bbb R\} $

$ г*) A = \{(x,y)|x \gt 0, x \in \Bbb R, y \in \Bbb R\} $

$ B = \{(x,y)|x \le 5, x \in \Bbb R, y \in \Bbb R\} $

A\B $ = \{(x,y)|x \gt 5, x \in \Bbb R, y \in \Bbb R\} $

B\A $ = \{(x,y)|x \le 0, x \in \Bbb R, y \in \Bbb R\} $

Пример 5. Из 100 студентов умеют программировать на Python 28 человек, на Java 30 человек, на C# 42 человека, на Python и Java 8 человек, на Python и C# 10 человек, на Java и C# 5 человек. Все три языка знают 3 студента. А сколько студентов не умеют программировать на этих языках?

Пример 5.

n(U) = 100

n(A) = 28, n(B) = 30, n(C) = 42

$ n(A \cap B) = 8, n(B \cap C) = 5, n(A \cap C) = 10 $

$n(A \cap B \cap C) = 3$

Всего программистов:

$ n(A \cup B \cup C) = n(A)+n(B)+n(C)- $

$ (n(A \cap B)+n(B \cap C)+n(A \cap C) )+n(A \cap B \cap C) $

$n(A \cup B \cup C) = 28+30+42-(8+5+10)+3 = 100-23+3 = 80$

Число не умеющих программировать:

$n(U)-n(A \cup B \cup C) = 100-80 = 20$

Ответ: 20 человек

Регистрация
Войти с помощью
Необходимо принять пользовательское соглашение
Войти
Войти с помощью
Восстановление пароля
Пожаловаться
Задать вопрос