Уравнение и его корни
п.1. Определение уравнения и его корня
Уравнением с одной переменной x называют равенство f(x)=g(x), для которого поставлена задача найти все значения переменной x, которые обращают это равенство в истинное числовое равенство.
Значение переменной, при котором выражения f(x) и g(x) принимают равные числовые значения, называют корнем уравнения f(x)=g(x).
Например, для уравнения 15x+8=23 корнем является значение x=1.
В уравнении x(x + 5)(x - 3) = 0 три корня, $x_1 = 0,x_2 = -5,x_3 = 3$.
Уравнение $x^2 = -1$ действительных корней не имеет.
В уравнении 5(x + 3)=5x + 15 бесконечное количество корней, т.к. оно превращается в истинное равенство при любом $x \in \Bbb R$, т.е. является тождеством.
Решить уравнение означает найти все его корни или доказать, что их нет.
п.2. Примеры
Пример 1. Решите уравнение и выполните проверку x - (3 - 2x) = 9
Решение:
x-(3-2x)=9 $\iff$ x-3+2x=9 $\iff$ x+2x=9+3 $\iff$ 3x=12 $\iff$ x=4
Проверка:
$4 -(3 - 2 \cdot 4)=9 \implies 4 - 3 + 8 = 9 \implies 9 \equiv 9$
Ответ: x = 4
Пример 2. Решите уравнение и выполните проверку 7(x + 3) = 56
Решение:
7(x + 3)=56 |:7 $\iff$ x + 3 = 8 $\iff$ x = 8 - 3 $\iff$ x=5
Проверка:
$7(5 + 3) = 56 \implies 7 \cdot 8 = 56 \implies 56 \equiv 56$
Ответ: x = 5
Пример 3. Решите уравнение и выполните проверку (3x + 4) : 2 = 14
Решение:
(3x + 4) : 2=14 |$\times$2 $\iff$ 3x + 4 = 28 $\iff$ 3x = 28 - 4 $\iff$ 3x = 24 $\iff$ x=8
Проверка:
$(3 \cdot 8 + 4) : 2 = 14 \implies (24 + 4) : 2 = 14 \implies 28 : 2 = 14 \implies 14 \equiv 14$
Ответ: x = 8
Пример 4. Решите уравнение $ \frac{3x-7}{3} - \frac {5x-11}{5} = 0$
Решение:
$\frac {3x-7}{3} - \frac {5x-11}{5} = 0 | \times 15 \iff5(3x-7)-3(5x-11)=0 \iff$
$ \iff 15x-35-15x+33=0 \iff 0x=2 \iff x \in \varnothing $
Решений нет.
Ответ: $x \in \varnothing $
Пример 5. Решите уравнение $\frac {2x - 7}{2} = \frac {3x+6}{3}$
Решение:
$\frac {2x-7}{2}=\frac {x+6}{3} | \times 6 \iff 3(2x-7)=2(x+6) \iff 6x-21=2x+12 \iff $
$\iff 6x-2x=12+21 \iff 4x=33 \iff x= \frac {33}{4} =8 \frac 14$
Ответ: $8 \frac 14$
Пример 6. Решите уравнение |x+1|=5
Решение:
$$|x+1|=5 \iff \left[ \begin{array}{cc} {x+1=-5}\\ {x+1=5} \end{array} \right. \iff \left[ \begin{array}{cc} {x=-5-1}\\ {x=5-1} \end{array} \right. \iff \left[ \begin{array}{cc} {x_1=-6}\\ {x_2=4} \end{array} \right. $$
Ответ: $ x_1=-6, x_2=4$
Пример 7*. Решите уравнение и выполните проверку |x + 1| = x + 3
Решение:
$$ |x + 1| = x + 3 \iff \left[ \begin{array}{cc} {\left\{ \begin{array}{c} x+1 \ge 0 \\ x+1=x+3 \end{array} \right.}\\ {\left\{ \begin{array}{c} x+1<0 \\ -(x+1)=x+3 \end{array} \right.} \end{array} \right. \iff \left[ \begin{array}{cc} {\left\{ \begin{array}{c} x \ge -1 \\ 1=3 \end{array} \right.}\\ {\left\{ \begin{array}{c} x<-1 \\ -x-1=x+3 \end{array} \right.} \end{array} \right. \iff $$
$$ \iff \left[ \begin{array}{cc} {\emptyset}\\ {\left\{ \begin{array}{c} x<-1 \\ -x-x=3+1 \end{array} \right.} \end{array} \right. \iff \left[ \begin{array}{cc} {x<-1}\\ {-2x=4} \end{array} \right. \iff \left[ \begin{array}{cc} {x<-1}\\ {x=-2} \end{array} \right. \iff x=-2 $$
Проверка:
$$|-2+1|=-2+3 \implies |-1|=1\implies 1 \equiv 1$$
Ответ: x = -2
Пример 8. При каком значении a уравнение 5ax + 18 = 3 будет иметь корень x = -3?
Решение:
Подставляем x=-3 в уравнение и решаем его относительно параметра a:
5a $\cdot$ (-3) + 18 = 3 $\iff$ -15a = 3 - 18 $\iff$ -15a = -15 $\iff$ a = -15:(-15)=1
a=1
Ответ: a = 1