Система линейных уравнений с тремя переменными
Линейное уравнение с тремя переменными и его решение
Уравнение вида ax+by+cz = d , где a, b, c, d - данные числа, называется линейным уравнением с тремя переменными x, y и z.
Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; \frac{1}{2} x-8y-5z = 7$
Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.
Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$
Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.
Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве.
Решение системы линейных уравнений с тремя переменными методом подстановки
Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)
Например: решить систему
$$ {\left\{ \begin{array}{c} 3x+2y-z = 8 \\ x-y+z = -2 \\ 2x-3y-5z = 1 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} 3(y-z-2)+2y-z = 8 \\ x = y-z-2 \\ 2(y-z-2)-3y-5z = 1 \end{array} \right.} \Rightarrow $$
$$ \Rightarrow {\left\{ \begin{array}{c} x = y-z-2 \\ 5y-4z = 14 \\ -y-7z = 5 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = y-z-2 \\ y = -7z-5 \\ 5(-7z-5)-4z = 14 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = y-z-2 \\ y = -7z-5 \\ -39z = 39 \end{array} \right.} \Rightarrow $$
$$ \Rightarrow {\left\{ \begin{array}{c} x = 2-(-1)-2 = 1 \\ y = -7\cdot(-1)-5 = 2 \\ z = -1 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = 1 \\ y = 2 \\ z = -1 \end{array} \right.} $$
Ответ: (1;2;-1)
Решение системы линейных уравнений с тремя переменными методом Крамера
Метод Крамера для системы уравнений с 2-мя переменными рассмотрен в §48 данного справочника.
Для системы с 3-мя переменными действуем по аналогии.
Дана система 3-х линейных уравнений с 3-мя переменными:
$$ {\left\{ \begin{array}{c} a_1 x+b_1 y+c_1 z = d_1 \\ a_2 x+b_2 y+c_2 z = d_2 \\ a_3 x+b_3 y+c_3 z = d_3 \end{array} \right.} $$
Определим главный определитель системы:
$$ \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} $$
и вспомогательные определители:
$$ \Delta_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}, \Delta_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}, \Delta_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix} $$
Тогда решение системы:
$$ {\left\{ \begin{array}{c} x = \frac{\Delta_x}{\Delta} \\ y = \frac{\Delta_y}{\Delta} \\ z = \frac{\Delta_z}{\Delta} \end{array} \right.} $$
Соотношение значений определителей, расположения плоскостей и количества решений:
Три плоскости пересекаются в одной точке
Три плоскости параллельны
Две или три плоскости совпадают или пересекаются по прямой
Одно решение
Нет решений
Бесконечное множество решений
Осталось определить правило вычисления определителя 3-го порядка.
Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):
$$ \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 = \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 = \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = $$
$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$
Примеры
Пример 1. Найдите решение системы уравнений методом подстановки:
$ а) {\left\{ \begin{array}{c} 3x+2y-z = 13 \\ 2x-y+3z = -2 \\ x+2y-z = 9 \end{array} \right.} $
$${\left\{ \begin{array}{c} z = 3x+2y-13 \\ 2x-y+3(3x+2y-13) = -2 \\ x+2y-(3x+2y-13) = 9 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} z = 3x+2y-13 \\ 11x+5y = 37 \\ -2x = -4 \end{array} \right.} \Rightarrow $$
$$\Rightarrow {\left\{ \begin{array}{c} z = 3\cdot2+2\cdot3-13 = -1 \\ y = \frac{37-11\cdot2}{5} = 3 \\ x = 2 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = 2 \\ y = 3 \\ z = -1 \end{array} \right.} $$
Ответ: (2;3;-1)
$ б) {\left\{ \begin{array}{c} x+y+3z = 6 \\ 2x-5y-z = 5 \\ x+2y-5z = -11 \end{array} \right.} $
$$ {\left\{ \begin{array}{c} x = -y-3z+6 \\ 2(-y-3z+6)-5y-z = 5\\ (-y-3z+6)+2y-5z = -11 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = -y-3z+6 \\ -7y-7z = -7 |:(-7) \\ y-8z = -17 \end{array} \right.} \Rightarrow $$
$$ \Rightarrow {\left\{ \begin{array}{c} x = -y-3z+6 \\ y+z = 1 \\ y-8z = -17 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = -y-3z+6 \\ 9z = 18 \\ y = 1-z \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c} x = 1-6+6 = 1 \\ z = 2 \\ y = 1-2 = -1 \end{array} \right.} \Rightarrow$$
$$ \Rightarrow {\left\{ \begin{array}{c} x = 1 \\ y = -1 \\ z = 2 \end{array} \right.} $$
Ответ: (1;-1;2)
Пример 2. Найдите решение системы уравнений методом Крамера:
$а) {\left\{ \begin{array}{c}3x+2y-z = 13 \\ 2x-y+3z = -2 \\ x+2y-z = 9 \end{array} \right.} $
$$ \Delta = \begin{vmatrix} 3 & 2 & -1 \\ 2 & -1 & 3\\ 1 & 2 & -1 \end{vmatrix} = 3 = \begin{vmatrix} -1 & 3 \\ 2 & -1 \\ \end{vmatrix} - 2 = \begin{vmatrix} 2 & 3 \\ 1 & -1 \\ \end{vmatrix} - 1 = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ \end{vmatrix} = $$
$$= 3(1-6)-2(-2-3)-(4+1) = -15+10-5 = -10$$
$$ \Delta_x = \begin{vmatrix} 13 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & -1 \\ \end{vmatrix} = 13 = \begin{vmatrix} -1 & 3 \\ 2 & -1 \\ \end{vmatrix} - 2 = \begin{vmatrix} -2 & 3 \\ 9 & -1 \\ \end{vmatrix} - 1 = \begin{vmatrix} -2 & -1 \\ 9 & 2 \\ \end{vmatrix} = $$
$$ = 13(1-6)-2(2-27)-(-4+9) = -65+50-5=-20 $$
$$ \Delta_y = \begin{vmatrix} 3 & 13 & -1 \\ 2 & -2 & 3 \\ 1 & 9 & -1 \\ \end{vmatrix} = 3 = \begin{vmatrix} -2 & 3 \\ 9 & -1 \\ \end{vmatrix} - 13 = \begin{vmatrix} 2 & 3 \\ 1 & -1 \\ \end{vmatrix} - 1 = \begin{vmatrix} 2 & -2 \\ 1 & 9 \\ \end{vmatrix} = $$
$$ = 3(2-27)-13(-2-3)-(18+2) = -75+65-20 = -30 $$
$$ \Delta_z = \begin{vmatrix} 3 & 2 & 13 \\ 2 & -1 & -2 \\ 1 & 2 & 9 \\ \end{vmatrix} = 3 = \begin{vmatrix} -1 & -2 \\ 2 & 9 \\ \end{vmatrix} - 2 = \begin{vmatrix} 2 & -2 \\ 1 & 9 \\ \end{vmatrix} + 13 = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ \end{vmatrix} = $$
$$ = 3(-9+4)-2(18+2)+13(4+1) = -15-40+65 = 10 $$
$$ x = \frac{\Delta_x}{\Delta} = \frac{-20}{-10} = 2, y = {\Delta_y}{\Delta} = \frac{-30}{-10} = 3, z = {\Delta_z}{\Delta} = \frac{10}{-10} = -1$$
Ответ: (2;3;-1)
$б) {\left\{ \begin{array}{c} x+y+3z = 6 \\ 2x-5y-z = 5 \\ x+2y-5z = -11 \end{array} \right.} $
$$ \Delta = \begin{vmatrix} 1 & 1 & 3 \\ 2 & -5 & -1\\ 1 & 2 & -5 \end{vmatrix} = 1 = \begin{vmatrix} -5 & -1 \\ 2 & -5 \\ \end{vmatrix} - 1 = \begin{vmatrix} 2 & -1 \\ 1 & -5 \\ \end{vmatrix} + 3 = \begin{vmatrix} 2 & -5 \\ 1 & 2 \\ \end{vmatrix} = $$
$$= (25+2)—(-10+1)+3(4+5) = 27+9+27 = 63$$
$$ \Delta_x = \begin{vmatrix} 6 & 1 & 3 \\ 5 & -5 & -1 \\ -11 & 2 & -5 \\ \end{vmatrix} = 6 = \begin{vmatrix} -5 & -1 \\ 2 & -5 \\ \end{vmatrix} - 1 = \begin{vmatrix} 5 & -1 \\ -11 & -5 \\ \end{vmatrix} + 3 = \begin{vmatrix} 5 & -5 \\ -11 & 2 \\ \end{vmatrix} = $$
$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$
$$ \Delta_y = \begin{vmatrix} 1 & 16 & 3 \\ 2 & 5 & -1 \\ 1 & -11 & -5 \\ \end{vmatrix} = 1 = \begin{vmatrix} 5 & -1 \\ -11 & -5 \\ \end{vmatrix} - 6 = \begin{vmatrix} 2 & -1 \\ 1 & -5 \\ \end{vmatrix} + 3 = \begin{vmatrix} 2 & 5 \\ 1 & -11 \\ \end{vmatrix} = $$
$$ = (-25-11)—6(-10+1)+3(-22-5) = -36+54-81 = -63 $$
$$ \Delta_z = \begin{vmatrix} 1 & 1 & 6 \\ 2 & -5 & 5 \\ 1 & 2 & -11 \\ \end{vmatrix} = 1 = \begin{vmatrix} -5 & 5 \\ 2 & -11 \\ \end{vmatrix} - 1 = \begin{vmatrix} 2 & 5 \\ 1 & -11 \\ \end{vmatrix} + 6 = \begin{vmatrix} 2 & -5 \\ 1 & 2 \\ \end{vmatrix} = $$
$$ = (55-10)—(-22-5)+6(4+5) = 45+27+54 = 126 $$
$$ x = \frac{\Delta_x}{\Delta} = \frac{63}{63} = 1, y = {\Delta_y}{\Delta} = \frac{-63}{63} = -1, z = {\Delta_z}{\Delta} = \frac{126}{63} = 2$$
Ответ: (1;-1;2)
Пример 3*. Решите систему уравнений относительно x,y,и z:
$$ {\left\{ \begin{array}{c} a^3+a^2 x+ay+z = 0 \\ b^3+b^2 x+by+z = 0 \\ c^3+c^2 x+cy+z = 0 \end{array} \right.} $$
$$ a \neq b, b \neq c, a \neq c $$
Решаем методом замены:
$$ {\left\{ \begin{array}{c} z = -(a^3+a^2 x+ay)\\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \\ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 \end{array} \right.} \Rightarrow {\left\{ \begin{array}{c}z = -(a^3+a^2 x+ay)\\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \\ (c^2-a^2 )x+(c-a)y = a^3-c^3 \end{array} \right.} $$
Т.к. $ a \neq b$ второе уравнение можно сократить на $(a-b) \neq 0$
Т.к.$ a \neq c$ третье уравнение можно сократить на $(a-с) \neq 0 $. В третьем уравнении после сокращения поменяем знаки:
$$ {\left\{ \begin{array}{c} z = -(a^3+a^2 x+ay) \\ -(a-b)(a+b)x-(a-b)y = (a-b)(a^2+ab+b^2 ) \\ -(a-c)(a+c)x-(a-c)y = (a-c)(a^2+ac+c^2 ) \end{array} \right.} $$
$$ {\left\{ \begin{array}{c} z = -(a^3+a^2 x+ay) \\ -(a+b)x-y = a^2+ab+b^2 \\ (a+c)x+y = -(a^2+ac+c^2 ) \end{array} \right.} $$
$$ {\left\{ \begin{array}{c} z = -(a^3+a^2 x+ay) \\ -(a+b)x+(a+c)x = (a^2+ab+b^2 ) - (a^2+ac+c^2 ) \\ y = -(a+c)x-(a^2+ac+c^2 ) \end{array} \right.} $$
Из второго уравнения получаем:
$$x = \frac{ab+b^2-ac-c^2}{c-b} = -\frac{a(b-c)+(b^2-c^2 )}{b-c} = - \frac{(b-c)(a+b+c)}{b-c} $$
Т.к. $b \neq c$ можно сократить на $(b-c) \neq 0$:
$$ x = -(a+b+c)$$
Подставляем:
$$ y = -(a+c)x-(a^2+ac+c^2 ) = (a+c)(a+b+c)-(a^2+ac+c^2 ) = $$
$$ = a^2+ab+ac+ac+bc+c^2-a^2-ac-c^2 = ab+ac+bc $$
$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$
$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$
Ответ:$ {\left\{ \begin{array}{c} x = -(a+b+c) \\ y = ab+ac+bc \\ z = -abc \end{array} \right.} $