Кусочно-линейная функция
Графики и формулы кусочно-линейных функций
Ситуация, когда движение или другое явление можно описать одной линейной функцией, определенной на интервале $-\infty \lt t \lt +\infty$, в действительности невозможна. Хотя бы потому, что возраст Вселенной велик, но не бесконечен.
На практике в течение некоторого времени тело может двигаться, потом – покоиться, потом – опять прийти в движение, но уже с другой скоростью и в другом направлении и т.п. Как задать подобную зависимость?
Допустим, турист идет из начальной точки по прямой тропинке в течение 2 ч со скоростью 5 км/ч, затем останавливается отдохнуть на 1ч и возвращается обратно по той же тропинке со скоростью 4 км/ч. Нам нужно найти формулу для расстояния s(t) от начальной точки на протяжении всего похода.
Изобразим зависимость s(t) графически:
Первый отрезок AB легко записать: $ s_1 (t) = 5t,0 \le t \lt 2$
С отрезком BC тоже всё ясно: $s_2 (t) = 10,2 \le t \lt 3$
Осталось найти формулу для отрезка CD. Для него известен угловой коэффициент, равный скорости k = -4; знак «минус» оттого, что турист возвращается обратно. Формула имеет вид $s_3 (t) = -4t+b$. Также, нам известны координаты C(3;10).
Подставляем: $10 = -4 \cdot 3+b \Rightarrow b =22$. Осталось рассчитать момент возвращения:
$$0 = -4t_{back}+22 \Rightarrow t_{back} = 22:4 = 5,5$$ (ч)
Значит, формула движения на отрезке $CD:s_3 (t) = -4t+22,3 \le t \le 5,5.$
Получаем:
$$s(t) = {\left\{ \begin{array}{c} 5t,0 \le t \lt 2 \\ 10,2 \le t \lt 3 \\ -4t+22,3 \le t \le 5,5 \end{array} \right.} $$
Важным свойством заданной функции является выполнение условий согласования:
$$ s_1 (2) = s_2 (2) = 10,s_2 (3) = s_3 (3) = 10$$
Наша функция «сшита» на концах промежуточных интервалов.
В общем случае:
Функция вида
$$x f(x) = {\left\{ \begin{array}{c} k_1 x+b_1, x_1 \le x \lt x_2 \\ k_2 x+b_2,x_2 \le x \lt x_3 \\…\\ k_n x+b_n,x_n \le x \lt x_{n+1} \end{array} \right.}$$
называется кусочно-линейной.
При этом для функции на краях интервалов выполняются условия согласования:
$$f_i (x_{i+1} ) = f_{i+1} (x_{i+1} ),i = \overline {1,n-1} $$
Графиком кусочно-линейной функции является ломаная линия
Знак модуля в линейных функциях
По правилу раскрытия скобок модуля (см. §4 данного справочника)
$$ |x| = \left[ \begin{array}{cc} x, x\ge0 \\ -x, x \lt 0\end{array} \right.$$
Внимание!
Если в формуле для линейной функции содержится знак модуля, то после его раскрытия получается кусочно-линейная функция.
Например:
$$ y = 2|x|+5 = {\left\{ \begin{array}{c} -2x+5, x\ge0 \\ 2x+5, x \lt 0\end{array} \right.} $$
Мы заменили квадратную скобку со значением «или» на фигурную скобку со значением «и», поскольку именно смысл объединения - «и того, и другого» - вкладывается в определение кусочно-линейной функции .
Примеры
Пример 1. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:
а) $ y = |x| = {\left\{ \begin{array}{c} -x, x \lt0 \\ x, x \ge 0 \end{array} \right.}$

б) $ y = 2|x|-1 = {\left\{ \begin{array}{c} -2x-1, x \lt0 \\ 2x-1, x \ge 0 \end{array} \right.}$

в) $ y = |x+1| = {\left\{ \begin{array}{c} -x-1, x \lt0 \\ x+1, x \ge 0 \end{array} \right.}$

г) $ y = |x-2| = {\left\{ \begin{array}{c} -x+2, x \lt0 \\ x-2, x \ge 0 \end{array} \right.}$

Пример 2*. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:
$$ y = |2|x|-1| = {\left\{ \begin{array}{c} |-2x-1|, x\lt0 \\ |2x-1|,x \ge 0 \end{array} \right.} = {\left\{ \begin{array}{c} 2x+1, {\left\{ \begin{array}{c} -2x-1 \lt 0 \\ x \lt 0 \end{array} \right.} \\ -2x-1, {\left\{ \begin{array}{c} -2x-1 \ge 0 \\ x \lt 0\end{array} \right.} \\ -2x+1, {\left\{ \begin{array}{c}2x-1 \lt 0 \\ x \ge 0\end{array} \right.} \\ 2x-1, {\left\{ \begin{array}{c}2x-1 \ge 0 \\ x \ge 0\end{array} \right.} \end{array} \right.}= $$
$$ = {\left\{ \begin{array}{c} 2x+1, {\left\{ \begin{array}{c} -2x \lt 1 \\ x \lt 0 \end{array} \right.} \\ -2x-1, {\left\{ \begin{array}{c} -2x \ge 1 \\ x \lt 0\end{array} \right.} \\ -2x+1, {\left\{ \begin{array}{c}2x \lt 1 \\ x \ge 0\end{array} \right.} \\ 2x-1, {\left\{ \begin{array}{c}2x \ge 1 \\ x \ge 0\end{array} \right.} \end{array} \right.}= {\left\{ \begin{array}{c} 2x+1, {\left\{ \begin{array}{c} x \gt - \frac{1}{2} \\ x \lt 0 \end{array} \right.} \\ -2x-1, {\left\{ \begin{array}{c} x \le - \frac{1}{2} \\ x \lt 0\end{array} \right.} \\ -2x+1, {\left\{ \begin{array}{c}x \lt \frac{1}{2} \\ x \ge 0\end{array} \right.} \\ 2x-1, {\left\{ \begin{array}{c}x \ge \frac{1}{2} \\ x \ge 0\end{array} \right.} \end{array} \right.}= {\left\{ \begin{array}{c} -2x-1, x \le - \frac{1}{2} \\ 2x+1, - \frac{1}{2} \lt x \lt 0 \\ -2x+1, 0 \le x \lt \frac{1}{2} \\ 2x-1, x \ge \frac{1}{2} \end{array} \right.} $$
Как видно из этого примера, аналитически выводить формулу для двух модулей очень нелегко.
Гораздо легче сразу построить график, если следовать следующим простым правилам преобразования.
Шаг 1. Строим y = 2x-1

Шаг 2. Строим y = 2|x|-1 по правилу: |x| отражает часть графика для положительных $x \ge 0$ влево, зеркально относительно оси Y

Шаг 3. Строим y = |(2|x|-1)| по правилу: общий модуль отражает участок графика с отрицательными $y \lt 0$ вверх, зеркально относительно оси X

Или на одном графике:
